The six trigonometric ratios
\[1. \space sin \spaceθ = {Side \space opposite \space to \spaceθ\over
Hypotenuse}\] |
|
\[2. \space cos \spaceθ = {Side \space adjacent \space to \spaceθ\over
Hypotenuse}\] |
|
\[3. \space tan \spaceθ = {Side \space opposite \space to \spaceθ\over
\space Side \space adjacent \space to \spaceθ}\] |
|
\[4. \space cosecant \spaceθ = {1\over sin\spaceθ}\] |
|
\[5. \space secant \spaceθ = {1\over cos \spaceθ}\] |
|
\[6. \space cot \spaceθ = {1\over tan \spaceθ}\] |
|
Trigonometric ratios of some specific angles
Specific angles & Trigonometric ratios
|
\[{θ \space = \space 0°}\] |
\[{θ \space = \space 30°}\] |
\[{θ \space = \space 45°}\] |
\[{θ \space = \space 60°}\] |
\[{θ \space = \space 90°}\] |
\[{sin \space θ}\] |
\[{0}\] |
\[{1\over 2}\] |
\[{1\over \sqrt{2}}\] |
\[{\sqrt{3} \over 2}\] |
\[{1}\] |
\[{cos \space θ}\] |
\[{1}\] |
\[{\sqrt{3} \over 2}\] |
\[{1\over \sqrt{2}}\] |
\[{1\over 2}\] |
\[{0}\] |
\[{tan \space θ}\] |
\[{0}\] |
\[{1\over \sqrt{3}}\] |
\[{1}\] |
\[{\sqrt{3}}\] |
\[{Not\space defined}\] |
\[{cosec \space θ}\] |
\[{Not\space defined}\] |
\[{2}\] |
\[{\sqrt{2}}\] |
\[{2\over \sqrt{3}}\] |
\[{1}\] |
\[{sec \space θ}\] |
\[{1}\] |
\[{2\over \sqrt{3}}\] |
\[{\sqrt{2}}\] |
\[{2}\] |
\[{Not\space defined}\] |
\[{cot \space θ}\] |
\[{Not\space defined}\] |
\[{\sqrt{3}}\] |
\[{1}\] |
\[{1\over \sqrt{3}}\] |
\[{0}\] |
Trigonometric ratios of complementary angles
Angle \(θ\) and \((90° - θ\))are complementary angles
\[{sin \space θ = \space cos \space (90°-θ)}\] |
\[{cos \space θ = \space sin \space (90°-θ)}\] |
\[{tan \space θ = \space cot \space (90°-θ)}\] |
\[{cosec \space θ = \space sec \space (90°-θ)}\] |
\[{sec \space θ = \space cosec \space (90°-θ)}\] |
\[{cot \space θ = \space tan \space (90°-θ)}\] |
Trigonometric identities
\[{sin^2 \space θ + \space cos^2 \space θ \space= \space 1}\] |
\[{1+tan^2 \space θ = \space sec^2\space θ}\] |
\[{1+cot^2 \space θ = \space cosec^2\space θ}\] |
Alternate forms 1:
\[{cos^2 \space θ = \space 1 - \space sin^2 \space θ}\] |
\[{sec^2 \space θ - \space tan^2 \space θ \space = \space 1}\] |
\[{cosec^2 \space θ - \space cot^2 \space θ \space = \space 1}\] |
\[{sin^2 \space θ = \space 1 - \space cos^2 \space θ}\] |
\[{sec^2 \space θ - \space 1 \space = \space tan^2 \space θ}\] |
\[{cosec^2 \space θ - \space 1 \space = \space cot^2 \space θ}\] |
Alternate forms 2:
\(sin \space θ\) in terms of \(cos \space θ,
\space tan \spaceθ\) |
\[sin θ = {\sqrt{1-cos^2θ}}\] |
\[sin θ = {tanθ \over \sqrt{1-tan^2θ}}\] |
\(cos \space θ\) in terms of \(sin \space θ,
\space tan \spaceθ\) |
\[cos θ = {\sqrt{1-sin^2θ}}\] |
\[cos θ = {1\over \sqrt{1+tan^2θ}}\] |
\(tan \space θ\) in terms of \(sin \space θ,
\space cos \space θ\) |
\[tan θ = {sin θ \over \sqrt{1-sin^2θ}}\] |
\[cos θ = {\sqrt{1+cos^2θ} \over cosθ }\] |